$$\forall a, b \bullet a R b \implies b R a$$
where \(R\) is a relation. For example,
- = relation on \(\mathbb{R}\)
- is equal to
- is married to
- {(1,2), (2,1)}
$$\forall a,b:X \bullet a R b \land b R a \implies a = b $$
For example,
- \(\leq\)
- \(\geq\)
- \(\subseteq\)
- {(1, 2), (2, 3), (1, 1)}
$$\forall a,b:X \bullet a R b \implies \lnot(bRa) $$
For example,
- {(1,2), (3,4)}
$$\forall x:X \bullet xRx$$
For example,
- =
- \(\leq\)
$$\forall x:X \bullet \lnot(xRx)$$
For example,
- \(>\), \(<\)
Coreflexive (a subset of Identity Relation)
$$\forall x,y:X \bullet x R y \implies x= y)$$
For example,
- equal to and odd, such as {(1,1), (3,3)}
$$\{(x,x) | x \in X\}$$
Transitive
$$\forall x,y,z:X \bullet x R y \land y R z \implies x R z$$
For example,
- \(<\), =, \(\leq\)
No comments :
Post a Comment